Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Poly[[ $\mu_2$ -aqua-aqua( $\mu_3$ -3,5-dinitrosalicylato)barium(II)] monohydrate]

# Wen-Dong Song,\* Run-Zhen Fan, Chang-Sheng Gu and Xiao-Min Hao

College of Science, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China

Correspondence e-mail: songwd60@126.com

Received 7 December 2007; accepted 7 March 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.026; wR factor = 0.068; data-to-parameter ratio = 11.9.

In the title coordination polymer,  $\{[Ba(C_7H_2N_2O_7)(H_2O)_2] - H_2O\}_n$ , the Ba<sup>II</sup> atom is ten-coordinated by seven O atoms from four 3,5-dinitrosalicylatate ligands, two  $\mu_2$ -bridging aqua ligands and one water molecule. The coordination mode is best described as a bicapped square-antiprismatic geometry. The 3,5-dinitrosalicylatate ligands bridge three Ba atoms. Centrosymmetrically related dinuclear barium units, with a Ba $\cdot \cdot$ Ba separation of 4.767 (5) Å, form infinite chains, which are further self-assembled into a supramolecular network through intermolecular O-H $\cdot \cdot \cdot$ O hydrogen-bonding interactions between O atoms of 3,5-dinitrosalicylatate ligands and water molecules.

### **Related literature**

For related literature, see: Song et al. (2007).



## Experimental

#### Crystal data

 $[Ba(C_7H_2N_2O_7)(H_2O)_2] \cdot H_2O$   $M_r = 417.49$ Monoclinic,  $P2_1/c$  a = 11.9649 (6) Å b = 4.1866 (2) Å c = 26.121 (1) Å  $\beta = 109.332$  (3)°

#### Data collection

Bruker APEXII area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996)  $T_{\rm min} = 0.392, T_{\rm max} = 0.471$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.026$ |  |
|---------------------------------|--|
| $wR(F^2) = 0.067$               |  |
| S = 1.05                        |  |
| 2374 reflections                |  |
| 199 parameters                  |  |
| 9 restraints                    |  |

 $V = 1234.7 (1) \text{ Å}^{3}$  Z = 4Mo K\alpha radiation  $\mu = 3.27 \text{ mm}^{-1}$  T = 296 (2) K $0.30 \times 0.26 \times 0.23 \text{ mm}$ 

8615 measured reflections 2374 independent reflections 2189 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.041$ 

H atoms treated by a mixture of independent and constrained refinement  $\Delta \rho_{max} = 1.03 \text{ e } \text{ Å}^{-3}$  $\Delta \rho_{min} = -1.30 \text{ e } \text{ Å}^{-3}$ 

| Table 1               | _     |     |
|-----------------------|-------|-----|
| Hydrogen-bond geometr | y (Å, | °). |

| $D - H \cdot \cdot \cdot A$             | D-H      | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------------------|----------|--------------|--------------|--------------------------------------|
| O3W−H6W···O7 <sup>i</sup>               | 0.82 (3) | 2.27 (3)     | 2.916 (4)    | 135 (4)                              |
| $O3W - H5W \cdot \cdot \cdot O5^{ii}$   | 0.82(4)  | 2.60(4)      | 2.985 (4)    | 110 (3)                              |
| $O3W - H5W \cdot \cdot \cdot O2W^{iii}$ | 0.82 (4) | 2.04 (3)     | 2.755 (4)    | 145 (4)                              |
| $O2W - H4W \cdot \cdot \cdot N1^{iv}$   | 0.83 (3) | 2.69 (4)     | 3.340 (4)    | 137 (4)                              |
| $O2W - H4W \cdots O4^{iv}$              | 0.83 (3) | 2.55 (4)     | 3.080 (4)    | 123 (3)                              |
| $O2W - H4W \cdots O5^{iv}$              | 0.83 (3) | 2.25 (3)     | 2.993 (4)    | 150 (5)                              |
| $O2W - H3W \cdot \cdot \cdot O3^{v}$    | 0.83 (3) | 2.01(2)      | 2.730 (4)    | 145 (4)                              |
| $O1W - H1W \cdots O3W^{v}$              | 0.83 (3) | 1.991 (16)   | 2.798 (4)    | 164 (4)                              |
| $O1W - H2W \cdot \cdot \cdot O3W^{vi}$  | 0.83 (3) | 1.90 (3)     | 2.725 (4)    | 171 (4)                              |

Symmetry codes: (i) x - 1, y, z; (ii)  $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$ ; (iii) -x + 1, -y + 2, -z; (iv)  $x, -y + \frac{1}{2}, z - \frac{1}{2}$ ; (v) -x + 1, -y + 1, -z; (vi) x + 1, y - 1, z.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge Guang Dong Ocean University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2052).

#### References

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Song, W.-D., Guo, X.-X. & Zhang, C.-H. (2007). Acta Cryst. E63, m399-m401.

supplementary materials

Acta Cryst. (2008). E64, m551 [doi:10.1107/S1600536808006338]

## Poly[[ $\mu_2$ -aqua-aqua( $\mu_3$ -3,5-dinitrosalicylato)barium(II)] monohydrate]

## W.-D. Song, R.-Z. Fan, C.-S. Gu and X.-M. Hao

## Comment

In the structural investigation of 3,5-dinitrosalicylatato complexes, it has been found that the 3,5-dinitrosalicylatato moiety functions as a multidentate ligand (Song *et al.*, 2007) with versatile binding and coordination modes. In this paper, we report the crystal structure of the title compound, (I), a new Ba complex obtained by the reaction of 3,5-dinitrosalicylic acid and barium chloride in alkaline aqueous solution.

As illustrated in Figure 1, the Ba<sup>II</sup> atom displays a bicapped square antiprismatic coordination environment, defined by seven O atoms from four 3,5-dinitrosalicylatato ligands, two  $\mu_2$ -bridging aqua ligands and one water molecule. The 3,5-dinitrosalicylatato ligands link barium ions to form infinite chains, which are further self-assembled into a supramolecular network through intermolecular O—H…O hydrogen bonding interactions (Table 1) involving the uncoordinating water molecules, coordinating water molecules as donors and O atoms of 3,5-dinitrosalicylatato ligands as acceptors (Fig. 2).

#### Experimental

A mixture of barium chloride (1 mmol), 3,5-dinitrosalicylic acid (1 mmol), NaOH (1.5 mmol) and H<sub>2</sub>O (12 ml) was placed in a 23 ml Teflon reactor, which was heated to 433 K for three days and then cooled to room temperature at a rate of 10 K  $h^{-1}$ . The obtained crystals obtained were washed with water and dryed in air.

### Refinement

Carbon-bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 Å, and with  $U_{iso}(H) = 1.2 U_{eq}(C)$ . Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O–H = 0.84 Å and H···H = 1.39 Å, each within a standard deviation of 0.01 Å, and with  $U_{iso}(H) = 1.5 U_{eq}(O)$ 

#### **Figures**



Fig. 1. The structure of (I), showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids.



## $Poly[[\mu_2-aqua-aqua(\mu_3-3,5-dinitrosalicylato)barium(II)] monohydrate]$

 $F_{000} = 800$ 

 $D_{\rm x} = 2.246 \text{ Mg m}^{-3}$ Mo *K* $\alpha$  radiation

Cell parameters from 5837 reflections

 $\lambda = 0.71073 \text{ Å}$ 

 $\theta = 2.8 - 27.9^{\circ}$ 

 $\mu = 3.27 \text{ mm}^{-1}$ T = 296 (2) K

Block, yellow

 $0.30\times0.26\times0.23~mm$ 

## Crystal data

[Ba(C<sub>7</sub>H<sub>2</sub>N<sub>2</sub>O<sub>7</sub>)(H<sub>2</sub>O)<sub>2</sub>]·H<sub>2</sub>O  $M_r = 417.49$ Monoclinic,  $P2_1/c$ Hall symbol: -P 2ybc a = 11.9649 (6) Å b = 4.1866 (2) Å c = 26.121 (1) Å  $\beta = 109.332$  (3)° V = 1234.7 (1) Å<sup>3</sup> Z = 4

Data collection

| Bruker APEXII area-detector<br>diffractometer                  | 2374 independent reflections           |
|----------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                       | 2189 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                        | $R_{\rm int} = 0.041$                  |
| T = 296(2)  K                                                  | $\theta_{\text{max}} = 26.0^{\circ}$   |
| $\phi$ and $\omega$ scans                                      | $\theta_{\min} = 1.7^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 1996) | $h = -14 \rightarrow 14$               |
| $T_{\min} = 0.392, \ T_{\max} = 0.472$                         | $k = -4 \rightarrow 4$                 |
| 8615 measured reflections                                      | $l = -31 \rightarrow 32$               |

## Refinement

| Refinement on $F^2$                                    | Secondary atom site location: difference Fourier map                                |
|--------------------------------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full                             | Hydrogen site location: inferred from neighbouring sites                            |
| $R[F^2 > 2\sigma(F^2)] = 0.026$                        | H atoms treated by a mixture of independent and constrained refinement              |
| $wR(F^2) = 0.067$                                      | $w = 1/[\sigma^2(F_o^2) + (0.0339P)^2 + 1.4739P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.05                                        | $(\Delta/\sigma)_{\rm max} = 0.001$                                                 |
| 2374 reflections                                       | $\Delta \rho_{max} = 1.03 \text{ e } \text{\AA}^{-3}$                               |
| 199 parameters                                         | $\Delta \rho_{min} = -1.30 \text{ e } \text{\AA}^{-3}$                              |
| 9 restraints                                           | Extinction correction: none                                                         |
| Primary atom site location: structure-invariant direct |                                                                                     |

methods

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| Ba1<br>O1<br>O2<br>O3<br>O4<br>O5<br>O6<br>O7<br>N1<br>N2<br>C1<br>C2<br>C3<br>H3<br>C4 | 0.698106 (16)<br>0.7177 (2)<br>0.5320 (2)<br>0.4012 (2)<br>0.5934 (3)<br>0.7491 (3)<br>0.9954 (3)<br>0.8915 (2)<br>0.6755 (3)<br>0.9007 (3)<br>0.5067 (3)<br>0.6052 (3)<br>0.5950 (3)<br>0.5270 | 0.59849 (4)<br>0.1028 (5)<br>-0.3574 (6)<br>-0.0694 (6)<br>0.0066 (8)<br>0.3054 (8)<br>0.3764 (8)<br>0.5460 (7)<br>0.1544 (8)<br>0.4015 (7)<br>-0.1530 (8)<br>-0.0051 (9)<br>0.0128 (9)                         | 0.002749 (8)<br>0.06998 (10)<br>0.05297 (11)<br>0.07602 (11)<br>0.28282 (12)<br>0.31157 (12)<br>0.19294 (14)<br>0.11347 (12)<br>0.27501 (14)<br>0.15565 (14)<br>0.08248 (14)<br>0.12815 (14)<br>0.17862 (15) | 0.01250 (10)<br>0.0150 (5)<br>0.0211 (6)<br>0.0310 (6)<br>0.0359 (7)<br>0.0416 (9)<br>0.0251 (6)<br>0.0245 (7)<br>0.0205 (7)<br>0.0116 (7)<br>0.0129 (7)<br>0.0167 (7) |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01<br>02<br>03<br>04<br>05<br>06<br>07<br>N1<br>N2<br>C1<br>C2<br>C3<br>H3<br>C4        | 0.7177 (2)<br>0.5320 (2)<br>0.4012 (2)<br>0.5934 (3)<br>0.7491 (3)<br>0.9954 (3)<br>0.8915 (2)<br>0.6755 (3)<br>0.9007 (3)<br>0.5067 (3)<br>0.6052 (3)<br>0.5950 (3)<br>0.5270                  | 0.1028 (5)<br>- $0.3574 (6)$<br>- $0.0694 (6)$<br>0.0066 (8)<br>0.3054 (8)<br>0.3764 (8)<br>0.5460 (7)<br>0.1544 (8)<br>0.4015 (7)<br>- $0.1530 (8)$<br>- $0.0051 (9)$<br>0.0128 (9)                            | 0.06998 (10)<br>0.05297 (11)<br>0.07602 (11)<br>0.28282 (12)<br>0.31157 (12)<br>0.19294 (14)<br>0.11347 (12)<br>0.27501 (14)<br>0.15565 (14)<br>0.08248 (14)<br>0.12815 (14)<br>0.17862 (15)                 | 0.0150 (5)<br>0.0211 (6)<br>0.0190 (6)<br>0.0311 (7)<br>0.0359 (7)<br>0.0416 (9)<br>0.0251 (6)<br>0.0245 (7)<br>0.0205 (7)<br>0.0116 (7)<br>0.0129 (7)<br>0.0167 (7)   |
| O2<br>O3<br>O4<br>O5<br>O6<br>O7<br>N1<br>N2<br>C1<br>C2<br>C3<br>H3<br>C4              | 0.5320 (2)<br>0.4012 (2)<br>0.5934 (3)<br>0.7491 (3)<br>0.9954 (3)<br>0.8915 (2)<br>0.6755 (3)<br>0.9007 (3)<br>0.5067 (3)<br>0.6052 (3)<br>0.5950 (3)<br>0.5270                                | $\begin{array}{c} -0.3574 \ (6) \\ -0.0694 \ (6) \\ 0.0066 \ (8) \\ 0.3054 \ (8) \\ 0.3764 \ (8) \\ 0.5460 \ (7) \\ 0.1544 \ (8) \\ 0.4015 \ (7) \\ -0.1530 \ (8) \\ -0.0051 \ (9) \\ 0.0128 \ (9) \end{array}$ | 0.05297 (11)<br>0.07602 (11)<br>0.28282 (12)<br>0.31157 (12)<br>0.19294 (14)<br>0.11347 (12)<br>0.27501 (14)<br>0.15565 (14)<br>0.08248 (14)<br>0.12815 (14)<br>0.17862 (15)                                 | 0.0211 (6)<br>0.0190 (6)<br>0.0311 (7)<br>0.0359 (7)<br>0.0416 (9)<br>0.0251 (6)<br>0.0245 (7)<br>0.0205 (7)<br>0.0116 (7)<br>0.0129 (7)                               |
| O3<br>O4<br>O5<br>O6<br>O7<br>N1<br>N2<br>C1<br>C2<br>C3<br>H3<br>C4                    | 0.4012 (2)<br>0.5934 (3)<br>0.7491 (3)<br>0.9954 (3)<br>0.8915 (2)<br>0.6755 (3)<br>0.9007 (3)<br>0.5067 (3)<br>0.6052 (3)<br>0.5950 (3)<br>0.5270                                              | -0.0694 (6)<br>0.0066 (8)<br>0.3054 (8)<br>0.3764 (8)<br>0.5460 (7)<br>0.1544 (8)<br>0.4015 (7)<br>-0.1530 (8)<br>-0.0051 (9)<br>0.0128 (9)                                                                     | 0.07602 (11)<br>0.28282 (12)<br>0.31157 (12)<br>0.19294 (14)<br>0.11347 (12)<br>0.27501 (14)<br>0.15565 (14)<br>0.08248 (14)<br>0.12815 (14)<br>0.17862 (15)                                                 | 0.0190 (6)<br>0.0311 (7)<br>0.0359 (7)<br>0.0416 (9)<br>0.0251 (6)<br>0.0245 (7)<br>0.0205 (7)<br>0.0116 (7)<br>0.0129 (7)                                             |
| 04<br>05<br>06<br>07<br>N1<br>N2<br>C1<br>C2<br>C3<br>H3<br>C4                          | 0.5934 (3)<br>0.7491 (3)<br>0.9954 (3)<br>0.8915 (2)<br>0.6755 (3)<br>0.9007 (3)<br>0.5067 (3)<br>0.6052 (3)<br>0.5950 (3)<br>0.5270                                                            | 0.0066 (8)<br>0.3054 (8)<br>0.3764 (8)<br>0.5460 (7)<br>0.1544 (8)<br>0.4015 (7)<br>-0.1530 (8)<br>-0.0051 (9)<br>0.0128 (9)                                                                                    | 0.28282 (12)<br>0.31157 (12)<br>0.19294 (14)<br>0.11347 (12)<br>0.27501 (14)<br>0.15565 (14)<br>0.08248 (14)<br>0.12815 (14)<br>0.17862 (15)                                                                 | 0.0311 (7)<br>0.0359 (7)<br>0.0416 (9)<br>0.0251 (6)<br>0.0245 (7)<br>0.0205 (7)<br>0.0116 (7)<br>0.0129 (7)                                                           |
| O5<br>O6<br>O7<br>N1<br>N2<br>C1<br>C2<br>C3<br>H3<br>C4                                | 0.7491 (3)<br>0.9954 (3)<br>0.8915 (2)<br>0.6755 (3)<br>0.9007 (3)<br>0.5067 (3)<br>0.6052 (3)<br>0.5950 (3)<br>0.5270                                                                          | 0.3054 (8)<br>0.3764 (8)<br>0.5460 (7)<br>0.1544 (8)<br>0.4015 (7)<br>-0.1530 (8)<br>-0.0051 (9)<br>0.0128 (9)                                                                                                  | 0.31157 (12)<br>0.19294 (14)<br>0.11347 (12)<br>0.27501 (14)<br>0.15565 (14)<br>0.08248 (14)<br>0.12815 (14)<br>0.17862 (15)                                                                                 | 0.0359 (7)<br>0.0416 (9)<br>0.0251 (6)<br>0.0245 (7)<br>0.0205 (7)<br>0.0116 (7)<br>0.0129 (7)                                                                         |
| 06<br>07<br>N1<br>N2<br>C1<br>C2<br>C3<br>H3<br>C4                                      | 0.9954 (3)<br>0.8915 (2)<br>0.6755 (3)<br>0.9007 (3)<br>0.5067 (3)<br>0.6052 (3)<br>0.5950 (3)<br>0.5270                                                                                        | 0.3764 (8)<br>0.5460 (7)<br>0.1544 (8)<br>0.4015 (7)<br>-0.1530 (8)<br>-0.0051 (9)<br>0.0128 (9)                                                                                                                | 0.19294 (14)<br>0.11347 (12)<br>0.27501 (14)<br>0.15565 (14)<br>0.08248 (14)<br>0.12815 (14)<br>0.17862 (15)                                                                                                 | 0.0416 (9)<br>0.0251 (6)<br>0.0245 (7)<br>0.0205 (7)<br>0.0116 (7)<br>0.0129 (7)<br>0.0167 (7)                                                                         |
| 07<br>N1<br>N2<br>C1<br>C2<br>C3<br>H3<br>C4                                            | 0.8915 (2)<br>0.6755 (3)<br>0.9007 (3)<br>0.5067 (3)<br>0.6052 (3)<br>0.5950 (3)<br>0.5270                                                                                                      | 0.5460 (7)<br>0.1544 (8)<br>0.4015 (7)<br>-0.1530 (8)<br>-0.0051 (9)<br>0.0128 (9)                                                                                                                              | 0.11347 (12)<br>0.27501 (14)<br>0.15565 (14)<br>0.08248 (14)<br>0.12815 (14)<br>0.17862 (15)                                                                                                                 | 0.0251 (6)<br>0.0245 (7)<br>0.0205 (7)<br>0.0116 (7)<br>0.0129 (7)<br>0.0167 (7)                                                                                       |
| N1<br>N2<br>C1<br>C2<br>C3<br>H3<br>C4                                                  | 0.6755 (3)<br>0.9007 (3)<br>0.5067 (3)<br>0.6052 (3)<br>0.5950 (3)<br>0.5270                                                                                                                    | 0.1544 (8)<br>0.4015 (7)<br>-0.1530 (8)<br>-0.0051 (9)<br>0.0128 (9)                                                                                                                                            | 0.27501 (14)<br>0.15565 (14)<br>0.08248 (14)<br>0.12815 (14)<br>0.17862 (15)                                                                                                                                 | 0.0245 (7)<br>0.0205 (7)<br>0.0116 (7)<br>0.0129 (7)<br>0.0167 (7)                                                                                                     |
| N2<br>C1<br>C2<br>C3<br>H3<br>C4                                                        | 0.9007 (3)<br>0.5067 (3)<br>0.6052 (3)<br>0.5950 (3)<br>0.5270                                                                                                                                  | 0.4015 (7)<br>-0.1530 (8)<br>-0.0051 (9)<br>0.0128 (9)                                                                                                                                                          | 0.15565 (14)<br>0.08248 (14)<br>0.12815 (14)<br>0.17862 (15)                                                                                                                                                 | 0.0205 (7)<br>0.0116 (7)<br>0.0129 (7)<br>0.0167 (7)                                                                                                                   |
| C1<br>C2<br>C3<br>H3<br>C4                                                              | 0.5067 (3)<br>0.6052 (3)<br>0.5950 (3)<br>0.5270                                                                                                                                                | -0.1530 (8)<br>-0.0051 (9)<br>0.0128 (9)                                                                                                                                                                        | 0.08248 (14)<br>0.12815 (14)<br>0.17862 (15)                                                                                                                                                                 | 0.0116 (7)<br>0.0129 (7)<br>0.0167 (7)                                                                                                                                 |
| C2<br>C3<br>H3<br>C4                                                                    | 0.6052 (3)<br>0.5950 (3)<br>0.5270                                                                                                                                                              | -0.0051 (9)<br>0.0128 (9)                                                                                                                                                                                       | 0.12815 (14)<br>0.17862 (15)                                                                                                                                                                                 | 0.0129 (7)                                                                                                                                                             |
| C3<br>H3<br>C4                                                                          | 0.5950 (3)<br>0.5270                                                                                                                                                                            | 0.0128 (9)                                                                                                                                                                                                      | 0.17862 (15)                                                                                                                                                                                                 | 0.0167(7)                                                                                                                                                              |
| H3<br>C4                                                                                | 0.5270                                                                                                                                                                                          | 0.0(00                                                                                                                                                                                                          |                                                                                                                                                                                                              | 0.0107(7)                                                                                                                                                              |
| C4                                                                                      |                                                                                                                                                                                                 | -0.0629                                                                                                                                                                                                         | 0.1844                                                                                                                                                                                                       | 0.020*                                                                                                                                                                 |
| 05                                                                                      | 0.6874 (3)                                                                                                                                                                                      | 0.1461 (9)                                                                                                                                                                                                      | 0.22201 (15)                                                                                                                                                                                                 | 0.0178 (8)                                                                                                                                                             |
| 65                                                                                      | 0.7878 (3)                                                                                                                                                                                      | 0.2691 (9)                                                                                                                                                                                                      | 0.21433 (15)                                                                                                                                                                                                 | 0.0191 (8)                                                                                                                                                             |
| H5                                                                                      | 0.8488                                                                                                                                                                                          | 0.3552                                                                                                                                                                                                          | 0.2431                                                                                                                                                                                                       | 0.023*                                                                                                                                                                 |
| C6                                                                                      | 0.7951 (3)                                                                                                                                                                                      | 0.2603 (9)                                                                                                                                                                                                      | 0.16271 (14)                                                                                                                                                                                                 | 0.0158 (7)                                                                                                                                                             |
| C7                                                                                      | 0.7074 (3)                                                                                                                                                                                      | 0.1200 (8)                                                                                                                                                                                                      | 0.11687 (15)                                                                                                                                                                                                 | 0.0146 (8)                                                                                                                                                             |
| O1W                                                                                     | 0.8608 (2)                                                                                                                                                                                      | 0.1295 (6)                                                                                                                                                                                                      | 0.00092 (12)                                                                                                                                                                                                 | 0.0205 (6)                                                                                                                                                             |
| H2W                                                                                     | 0.922 (2)                                                                                                                                                                                       | 0.101 (10)                                                                                                                                                                                                      | 0.0272 (9)                                                                                                                                                                                                   | 0.031*                                                                                                                                                                 |
| H1W                                                                                     | 0.881 (3)                                                                                                                                                                                       | 0.137 (10)                                                                                                                                                                                                      | -0.0265 (9)                                                                                                                                                                                                  | 0.031*                                                                                                                                                                 |
| O2W                                                                                     | 0.7483 (2)                                                                                                                                                                                      | 0.6467 (6)                                                                                                                                                                                                      | -0.09980 (12)                                                                                                                                                                                                | 0.0223 (6)                                                                                                                                                             |
| H3W                                                                                     | 0.688 (2)                                                                                                                                                                                       | 0.758 (8)                                                                                                                                                                                                       | -0.1068 (17)                                                                                                                                                                                                 | 0.033*                                                                                                                                                                 |
| H4W                                                                                     | 0.732 (3)                                                                                                                                                                                       | 0.484 (6)                                                                                                                                                                                                       | -0.1189 (16)                                                                                                                                                                                                 | 0.033*                                                                                                                                                                 |
| O3W                                                                                     | 0.0565 (2)                                                                                                                                                                                      | 0.9715 (8)                                                                                                                                                                                                      | 0.08622 (12)                                                                                                                                                                                                 | 0.0255 (6)                                                                                                                                                             |
| H5W                                                                                     | 0.110 (3)                                                                                                                                                                                       | 1.093 (8)                                                                                                                                                                                                       | 0.1033 (15)                                                                                                                                                                                                  | 0.038*                                                                                                                                                                 |
| H6W                                                                                     | 0.047 (4)                                                                                                                                                                                       | 0.837 (8)                                                                                                                                                                                                       | 0.1074 (13)                                                                                                                                                                                                  | 0.038*                                                                                                                                                                 |

| $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ |
|----------|----------|----------|----------|----------|

 $U^{23}$ 

# supplementary materials

| Ba1 | 0.01402 (13) | 0.01055 (14) | 0.01455 (15) | -0.00009 (7) | 0.00690 (10) | -0.00038 (8) |
|-----|--------------|--------------|--------------|--------------|--------------|--------------|
| 01  | 0.0191 (13)  | 0.0156 (14)  | 0.0133 (13)  | -0.0010 (9)  | 0.0091 (11)  | -0.0007 (10) |
| O2  | 0.0199 (13)  | 0.0222 (15)  | 0.0235 (15)  | -0.0031 (10) | 0.0105 (12)  | -0.0089 (11) |
| O3  | 0.0142 (12)  | 0.0185 (15)  | 0.0238 (15)  | 0.0005 (10)  | 0.0055 (11)  | -0.0015 (11) |
| O4  | 0.0331 (16)  | 0.0413 (17)  | 0.0244 (16)  | -0.0037 (14) | 0.0167 (13)  | 0.0019 (15)  |
| O5  | 0.0411 (18)  | 0.0464 (19)  | 0.0186 (16)  | -0.0102 (15) | 0.0077 (14)  | -0.0100 (15) |
| O6  | 0.0227 (16)  | 0.066 (3)    | 0.033 (2)    | -0.0138 (14) | 0.0056 (15)  | 0.0021 (16)  |
| O7  | 0.0248 (14)  | 0.0226 (15)  | 0.0300 (17)  | -0.0044 (11) | 0.0117 (12)  | 0.0052 (13)  |
| N1  | 0.0296 (18)  | 0.0263 (18)  | 0.0184 (18)  | 0.0037 (14)  | 0.0089 (15)  | -0.0003 (14) |
| N2  | 0.0151 (15)  | 0.0223 (19)  | 0.0230 (19)  | -0.0046 (12) | 0.0049 (14)  | -0.0040 (14) |
| C1  | 0.0132 (16)  | 0.0130 (18)  | 0.0082 (17)  | -0.0010 (13) | 0.0030 (14)  | 0.0023 (13)  |
| C2  | 0.0163 (16)  | 0.0102 (17)  | 0.0128 (18)  | 0.0025 (14)  | 0.0056 (14)  | 0.0018 (14)  |
| C3  | 0.0178 (17)  | 0.0153 (18)  | 0.0178 (19)  | 0.0006 (15)  | 0.0071 (15)  | 0.0015 (16)  |
| C4  | 0.0214 (18)  | 0.021 (2)    | 0.0116 (18)  | 0.0022 (14)  | 0.0060 (15)  | -0.0015 (15) |
| C5  | 0.0190 (17)  | 0.018 (2)    | 0.0166 (19)  | -0.0003 (15) | 0.0013 (15)  | -0.0030 (16) |
| C6  | 0.0129 (16)  | 0.016 (2)    | 0.0181 (19)  | -0.0012 (14) | 0.0042 (14)  | -0.0002 (15) |
| C7  | 0.0184 (18)  | 0.0121 (19)  | 0.0146 (19)  | 0.0044 (13)  | 0.0074 (15)  | 0.0040 (13)  |
| O1W | 0.0156 (13)  | 0.0291 (16)  | 0.0186 (15)  | 0.0036 (10)  | 0.0079 (11)  | 0.0005 (12)  |
| O2W | 0.0290 (15)  | 0.0188 (15)  | 0.0222 (15)  | 0.0010 (11)  | 0.0126 (13)  | -0.0019 (11) |
| O3W | 0.0206 (14)  | 0.0334 (17)  | 0.0235 (16)  | -0.0020 (12) | 0.0086 (12)  | 0.0046 (13)  |
|     |              |              |              |              |              |              |

## Geometric parameters (Å, °)

| Ba1—O1                 | 2.678 (2)    | O5—N1                   | 1.237 (4) |
|------------------------|--------------|-------------------------|-----------|
| Ba1—O1 <sup>i</sup>    | 2.706 (2)    | O6—N2                   | 1.230 (5) |
| Ba1—O2 <sup>i</sup>    | 2.726 (3)    | O7—N2                   | 1.230 (4) |
| Ba1—O1W                | 2.777 (3)    | N1—C4                   | 1.438 (5) |
| Ba1—O3 <sup>ii</sup>   | 2.813 (3)    | N2—C6                   | 1.462 (4) |
| Ba1—O2 <sup>iii</sup>  | 2.840 (3)    | C1—C2                   | 1.505 (5) |
| Ba1—O2W                | 2.940 (3)    | C1—Ba1 <sup>iii</sup>   | 3.290 (3) |
| Ba1—O1W <sup>i</sup>   | 2.966 (3)    | C2—C3                   | 1.366 (5) |
| Ba1—O3 <sup>iii</sup>  | 2.989 (3)    | C2—C7                   | 1.447 (5) |
| Ba1—O7                 | 3.056 (3)    | C3—C4                   | 1.410 (5) |
| Ba1—C1 <sup>iii</sup>  | 3.290 (3)    | С3—Н3                   | 0.9300    |
| Ba1—Ba1 <sup>i</sup>   | 4.18660 (19) | C4—C5                   | 1.382 (5) |
| Ba1—H3W                | 2.90 (5)     | С5—С6                   | 1.380 (5) |
| O1—C7                  | 1.273 (4)    | С5—Н5                   | 0.9300    |
| O1—Ba1 <sup>iv</sup>   | 2.706 (2)    | C6—C7                   | 1.431 (5) |
| O2—C1                  | 1.254 (4)    | O1W—Ba1 <sup>iv</sup>   | 2.966 (3) |
| O2—Ba1 <sup>iv</sup>   | 2.726 (3)    | O1W—H2W                 | 0.83 (4)  |
| O2—Ba1 <sup>iii</sup>  | 2.840 (3)    | O1W—H1W                 | 0.83 (4)  |
| O3—C1                  | 1.266 (4)    | O2W—H3W                 | 0.83 (4)  |
| O3—Ba1 <sup>ii</sup>   | 2.813 (3)    | O2W—H4W                 | 0.83 (4)  |
| O3—Ba1 <sup>iii</sup>  | 2.989 (3)    | O3W—H5W                 | 0.82 (4)  |
| O4—N1                  | 1.233 (4)    | O3W—H6W                 | 0.83 (4)  |
| O1—Ba1—O1 <sup>i</sup> | 102.07 (8)   | O7—Ba1—Ba1 <sup>i</sup> | 94.12 (5) |

| O1—Ba1—O2 <sup>i</sup>                   | 69.92 (8)  | C1 <sup>iii</sup> —Ba1—Ba1 <sup>i</sup>  | 124.53 (6) |
|------------------------------------------|------------|------------------------------------------|------------|
| O1 <sup>i</sup> —Ba1—O2 <sup>i</sup>     | 63.59 (7)  | O1—Ba1—H3W                               | 142.3 (6)  |
| O1—Ba1—O1W                               | 63.49 (7)  | O1 <sup>i</sup> —Ba1—H3W                 | 115.3 (6)  |
| O1 <sup>i</sup> —Ba1—O1W                 | 130.70 (8) | O2 <sup>i</sup> —Ba1—H3W                 | 131.3 (3)  |
| O2 <sup>i</sup> —Ba1—O1W                 | 133.10 (8) | O1W—Ba1—H3W                              | 86.9 (3)   |
| O1—Ba1—O3 <sup>ii</sup>                  | 161.23 (8) | O3 <sup>ii</sup> —Ba1—H3W                | 41.2 (3)   |
| O1 <sup>i</sup> —Ba1—O3 <sup>ii</sup>    | 81.53 (7)  | O2 <sup>iii</sup> —Ba1—H3W               | 81.9 (7)   |
| O2 <sup>i</sup> —Ba1—O3 <sup>ii</sup>    | 96.08 (8)  | O2W—Ba1—H3W                              | 16.3 (6)   |
| O1W—Ba1—O3 <sup>ii</sup>                 | 127.72 (8) | O1W <sup>i</sup> —Ba1—H3W                | 68.0 (7)   |
| O1—Ba1—O2 <sup>iii</sup>                 | 85.43 (8)  | O3 <sup>iii</sup> —Ba1—H3W               | 67.3 (7)   |
| O1 <sup>i</sup> —Ba1—O2 <sup>iii</sup>   | 118.10 (7) | O7—Ba1—H3W                               | 136.2 (6)  |
| O2 <sup>i</sup> —Ba1—O2 <sup>iii</sup>   | 62.17 (9)  | C1 <sup>iii</sup> —Ba1—H3W               | 71.6 (7)   |
| O1W—Ba1—O2 <sup>iii</sup>                | 107.83 (7) | Ba1 <sup>i</sup> —Ba1—H3W                | 76.7 (6)   |
| O3 <sup>ii</sup> —Ba1—O2 <sup>iii</sup>  | 76.78 (8)  | C7—O1—Ba1                                | 124.9 (2)  |
| O1—Ba1—O2W                               | 130.60 (7) | C7—O1—Ba1 <sup>iv</sup>                  | 130.8 (2)  |
| O1 <sup>i</sup> —Ba1—O2W                 | 122.52 (7) | Ba1—O1—Ba1 <sup>iv</sup>                 | 102.07 (8) |
| O2 <sup>i</sup> —Ba1—O2W                 | 146.64 (8) | C1—O2—Ba1 <sup>iv</sup>                  | 134.8 (2)  |
| O1W—Ba1—O2W                              | 71.15 (8)  | C1—O2—Ba1 <sup>iii</sup>                 | 99.6 (2)   |
| O3 <sup>ii</sup> —Ba1—O2W                | 56.60 (7)  | Ba1 <sup>iv</sup> —O2—Ba1 <sup>iii</sup> | 117.83 (9) |
| O2 <sup>iii</sup> —Ba1—O2W               | 90.76 (8)  | C1—O3—Ba1 <sup>ii</sup>                  | 116.9 (2)  |
| O1—Ba1—O1W <sup>i</sup>                  | 132.52 (7) | C1—O3—Ba1 <sup>iii</sup>                 | 92.2 (2)   |
| O1 <sup>i</sup> —Ba1—O1W <sup>i</sup>    | 60.61 (7)  | Ba1 <sup>ii</sup> —O3—Ba1 <sup>iii</sup> | 92.33 (8)  |
| O2 <sup>i</sup> —Ba1—O1W <sup>i</sup>    | 122.95 (7) | N2—O7—Ba1                                | 134.3 (2)  |
| O1W—Ba1—O1W <sup>i</sup>                 | 93.55 (7)  | O4—N1—O5                                 | 122.1 (3)  |
| O3 <sup>ii</sup> —Ba1—O1W <sup>i</sup>   | 65.38 (7)  | O4—N1—C4                                 | 119.0 (3)  |
| O2 <sup>iii</sup> —Ba1—O1W <sup>i</sup>  | 142.04 (8) | O5—N1—C4                                 | 118.9 (3)  |
| O2W—Ba1—O1W <sup>i</sup>                 | 66.46 (8)  | 07—N2—O6                                 | 122.5 (3)  |
| O1—Ba1—O3 <sup>iii</sup>                 | 78.80 (7)  | O7—N2—C6                                 | 119.2 (3)  |
| O1 <sup>i</sup> —Ba1—O3 <sup>iii</sup>   | 162.60 (7) | O6—N2—C6                                 | 118.3 (3)  |
| O2 <sup>i</sup> —Ba1—O3 <sup>iii</sup>   | 101.22 (7) | O2—C1—O3                                 | 122.7 (3)  |
| O1W—Ba1—O3 <sup>iii</sup>                | 65.50 (7)  | O2—C1—C2                                 | 118.9 (3)  |
| O3 <sup>ii</sup> —Ba1—O3 <sup>iii</sup>  | 92.33 (8)  | O3—C1—C2                                 | 118.5 (3)  |
| O2 <sup>iii</sup> —Ba1—O3 <sup>iii</sup> | 44.50 (7)  | O2—C1—Ba1 <sup>iii</sup>                 | 58.32 (18) |
| O2W—Ba1—O3 <sup>iii</sup>                | 65.05 (7)  | O3—C1—Ba1 <sup>iii</sup>                 | 65.18 (18) |
| O1W <sup>i</sup> —Ba1—O3 <sup>iii</sup>  | 131.14 (7) | C2—C1—Ba1 <sup>iii</sup>                 | 169.1 (2)  |
| O1—Ba1—O7                                | 56.58 (7)  | C3—C2—C7                                 | 121.9 (3)  |
| O1 <sup>i</sup> —Ba1—O7                  | 64.28 (8)  | C3—C2—C1                                 | 119.4 (3)  |
| O2 <sup>i</sup> —Ba1—O7                  | 89.64 (8)  | C7—C2—C1                                 | 118.7 (3)  |
| O1W—Ba1—O7                               | 69.50 (8)  | C2—C3—C4                                 | 120.0 (3)  |
| O3 <sup>n</sup> —Ba1—O7                  | 138.31 (7) | С2—С3—Н3                                 | 120.0      |
| O2 <sup>111</sup> —Ba1—O7                | 139.60 (8) | С4—С3—Н3                                 | 120.0      |

# supplementary materials

| O2W—Ba1—O7                                            | 123.25 (7)                    | C5—C4—C3                                           | 121.3 (3)  |
|-------------------------------------------------------|-------------------------------|----------------------------------------------------|------------|
| O1W <sup>i</sup> —Ba1—O7                              | 76.92 (7)                     | C5C4N1                                             | 119.9 (3)  |
| O3 <sup>iii</sup> —Ba1—O7                             | 127.03 (7)                    | C3—C4—N1                                           | 118.8 (3)  |
| O1—Ba1—C1 <sup>iii</sup>                              | 83.60 (8)                     | C6—C5—C4                                           | 118.1 (3)  |
| O1 <sup>i</sup> —Ba1—C1 <sup>iii</sup>                | 140.04 (8)                    | С6—С5—Н5                                           | 121.0      |
| O2 <sup>i</sup> —Ba1—C1 <sup>iii</sup>                | 82.29 (8)                     | C4—C5—H5                                           | 121.0      |
| O1W—Ba1—C1 <sup>iii</sup>                             | 87.53 (8)                     | C5—C6—C7                                           | 124.2 (3)  |
| O3 <sup>ii</sup> —Ba1—C1 <sup>iii</sup>               | 82.12 (8)                     | C5—C6—N2                                           | 116.7 (3)  |
| O2 <sup>iii</sup> —Ba1—C1 <sup>iii</sup>              | 22.07 (8)                     | C7—C6—N2                                           | 119.1 (3)  |
| O2W—Ba1—C1 <sup>iii</sup>                             | 75.72 (8)                     | O1—C7—C6                                           | 123.4 (3)  |
| O1W <sup>i</sup> —Ba1—C1 <sup>iii</sup>               | 139.44 (8)                    | O1—C7—C2                                           | 122.2 (3)  |
| O3 <sup>iii</sup> —Ba1—C1 <sup>iii</sup>              | 22.61 (8)                     | C6—C7—C2                                           | 114.4 (3)  |
| O7—Ba1—C1 <sup>iii</sup>                              | 139.53 (8)                    | Ba1—O1W—Ba1 <sup>iv</sup>                          | 93.55 (7)  |
| O1—Ba1—Ba1 <sup>i</sup>                               | 140.79 (5)                    | Ba1—O1W—H2W                                        | 121 (3)    |
| O1 <sup>i</sup> —Ba1—Ba1 <sup>i</sup>                 | 38.72 (5)                     | Ba1 <sup>iv</sup> —O1W—H2W                         | 107 (3)    |
| O2 <sup>i</sup> —Ba1—Ba1 <sup>i</sup>                 | 86.11 (5)                     | Ba1—O1W—H1W                                        | 113 (3)    |
| O1W—Ba1—Ba1 <sup>i</sup>                              | 135.00 (5)                    | Ba1 <sup>iv</sup> —O1W—H1W                         | 115 (3)    |
| O3 <sup>ii</sup> —Ba1—Ba1 <sup>i</sup>                | 45.50 (5)                     | H2W—O1W—H1W                                        | 106.4 (17) |
| O2 <sup>iii</sup> —Ba1—Ba1 <sup>i</sup>               | 110.82 (5)                    | Ba1—O2W—H3W                                        | 79 (3)     |
| O2W—Ba1—Ba1 <sup>i</sup>                              | 86.06 (5)                     | Ba1—O2W—H4W                                        | 114 (4)    |
| O1W <sup>i</sup> —Ba1—Ba1 <sup>i</sup>                | 41.45 (5)                     | H3W—O2W—H4W                                        | 108 (4)    |
| O3 <sup>iii</sup> —Ba1—Ba1 <sup>i</sup>               | 137.83 (5)                    | H5W—O3W—H6W                                        | 108 (4)    |
| Symmetry codes: (i) $x$ , $y+1$ , $z$ ; (ii) $-x+1$ , | , -y+1, -z; (iii) -x+1, -y, - | <i>z</i> ; (iv) <i>x</i> , <i>y</i> -1, <i>z</i> . |            |

Hydrogen-bond geometry (Å, °)

| D—H···A                                                                                                                                                                                                                                                                                                 | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H···A |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|--------------|---------|--|
| $O3W$ — $H6W$ ··· $O7^{v}$                                                                                                                                                                                                                                                                              | 0.82 (3)    | 2.27 (3)     | 2.916 (4)    | 135 (4) |  |
| O3W—H5W···O5 <sup>vi</sup>                                                                                                                                                                                                                                                                              | 0.82 (4)    | 2.60 (4)     | 2.985 (4)    | 110 (3) |  |
| O3W—H5W···O2W <sup>vii</sup>                                                                                                                                                                                                                                                                            | 0.82 (4)    | 2.04 (3)     | 2.755 (4)    | 145 (4) |  |
| O2W—H4W…N1 <sup>viii</sup>                                                                                                                                                                                                                                                                              | 0.83 (3)    | 2.69 (4)     | 3.340 (4)    | 137 (4) |  |
| O2W—H4W···O4 <sup>viii</sup>                                                                                                                                                                                                                                                                            | 0.83 (3)    | 2.55 (4)     | 3.080 (4)    | 123 (3) |  |
| O2W—H4W···O5 <sup>viii</sup>                                                                                                                                                                                                                                                                            | 0.83 (3)    | 2.25 (3)     | 2.993 (4)    | 150 (5) |  |
| O2W—H3W···O3 <sup>ii</sup>                                                                                                                                                                                                                                                                              | 0.83 (3)    | 2.01 (2)     | 2.730 (4)    | 145 (4) |  |
| O1W—H1W···O3W <sup>ii</sup>                                                                                                                                                                                                                                                                             | 0.83 (3)    | 1.991 (16)   | 2.798 (4)    | 164 (4) |  |
| O1W—H2W···O3W <sup>ix</sup>                                                                                                                                                                                                                                                                             | 0.83 (3)    | 1.90 (3)     | 2.725 (4)    | 171 (4) |  |
| Symmetry codes: (v) <i>x</i> -1, <i>y</i> , <i>z</i> ; (vi) - <i>x</i> +1, <i>y</i> +1/2, - <i>z</i> +1/2; (vii) - <i>x</i> +1, - <i>y</i> +2, - <i>z</i> ; (viii) <i>x</i> , - <i>y</i> +1/2, <i>z</i> -1/2; (ii) - <i>x</i> +1, - <i>y</i> +1, - <i>z</i> ; (ix) <i>x</i> +1, <i>y</i> -1, <i>z</i> . |             |              |              |         |  |



Fig. 1

Fig. 2

